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Abstract
We construct the bi-Hamiltonian structure of the waterbag model of dKP and
establish the third-order Hamiltonian operator associated with the waterbag
model. Also, the symmetries and conserved densities of the rational type are
discussed.
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1. Introduction

The dispersionless KP hierarchy(dKP or Benney moment chain) is defined by

∂tnλ(z) = {λ(z), Bn(z)}, n = 1, 2, . . . , (1)

where the Lax operator λ(z) is

λ(z) = z +
∞∑
1

vn+1z
−n (2)

and

Bn(z) = [λn(z)]+

n
, i = 1, 2, 3, . . . t1 = x.

Here [· · ·]+ denotes the non-negative part of the Laurent series λn(z). For example,

B2 = z2

2
+ v2, B3 = z3

3
+ v2z + v3.

Finally, the bracket in (1) denotes the natural Poisson bracket on the space of functions of the
two variables (x, z):

{f (x, z), g(x, z)} = ∂xf ∂zg − ∂xg∂zf. (3)
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The compatibility of (1) coincides with the zero-curvature equation

∂mBn(z) − ∂nBm(z) = {Bn(z), Bm(z)}. (4)

If we denote t2 = y and t3 = t , then equation (4) for m = 2, n = 3 gives

v3x = v2y v3y = v2t − v2v2x,

from which the dKP equation is derived (v2 = v):

vyy = (vt − vvx)x. (5)

According to the dKP theory [1, 11, 13, 26], there exists a wavefunction S(λ, x, t2, t3, . . .)

such that z = Sx and satisfies the Hamiltonian–Jacobian equation

∂S

∂tn
= Bn(z)|z=Sx

. (6)

It can be seen that the compatibility of (6) also implies the zero-curvature equation (4). Now,
we expand Bn(z) as

Bn(z(λ)) = [λn(z)]+

n
= λn

n
−

∞∑
i=0

Ginλ
−i−1,

where the coefficients can be calculated by the residue form

Gin = −resλ=∞(λiBn(z) dλ) = 1

i + 1
resz=∞

(
λi+1 ∂Bn(z)

∂z
dz

)
,

from which the symmetry property

Gin = Gni

can be easily deduced. Moreover [26], it can be shown that the polynomials Bn must satisfy
the integrability condition

∂Bm(λ)

∂tn
= ∂Bn(λ)

∂tm
,

from which in turns follows the integrability of the coefficients Gin, i.e., there exists the free
energy F (dispersionless τ function) such that

Gin = ∂2F
∂ti∂tn

.

This latter function may be for example used to invert formula (2) :

z = λ − F11

λ
− F12

2λ2
− F13

3λ3
− F14

4λ4
− · · · , (7)

where F1n are polynomials of v2, v3, . . . , vn+1 and in fact

hn ≡ F1n

n
= resz=∞

λn

n
dz (8)

are the conserved densities for the dKP hierarchy (1). In [3, 4], it is proved that the dKP
hierarchy (1) is equivalent to the dispersionless Hirota equation

D(λ)S(λ′) = −log
z(λ) − z(λ′)

λ
, (9)

where D(λ) is the operator
∑∞

n=1
1

nλn
∂

∂tn
.

Next, we consider the symmetry constraint [2]

Fx =
M∑
i=1

εiSi, (10)
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where Si = S(λi), λi are points in the complex plane and εi are constants. Note that from (7)
we know

D(λ)Fx = λ − z.

On the other hand, by (9) and (10), we also have

D(λ)Fx =
M∑
i=1

εiD(λ)Si = −
M∑
i=1

εi ln
z(λ) − z(λi)

λ

= −
M∑
i=1

εi ln(z − pi) +

(
M∑
i=1

εi

)
ln λ,

where z = z(λ) and pi = z(λi). We assume that

M∑
i=1

εi = 0

and then we get the waterbag reduction [2, 18]

λ = z −
M∑
i=1

εi ln(z − pi) (11)

= z +
∞∑

n=1

vn+1

zn
, (12)

where vn+1 = 1
n

∑M
i=1 εi(p

i)n. From this we obtain

B2(z) = 1

2
z2 +

M∑
i=1

εip
i.

So (t2 = y)

∂yp
i = ∂x

[
1

2
(pi)2 +

M∑
i=1

εip
i

]
. (13)

In [5], the two-component case of (13) is investigated. We see that equation (13) can be written
as the Hamiltonian system

⎡
⎢⎢⎢⎣

p1

p2

...

pM

⎤
⎥⎥⎥⎦

y

= 1

2

⎡
⎢⎢⎢⎢⎣

1
ε1

0 . . . . . . 0

0 1
ε2

0 . . . 0
...

...
. . .

... 0
0 0 . . . 0 1

εM

⎤
⎥⎥⎥⎥⎦ ∂x

⎡
⎢⎢⎢⎢⎢⎢⎣

δH3
δp1

δH3
δp2

...

δH3
δpM

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where δ is the variation derivative and

H3 = 1

3

∫
dx Res(λ3 dz) =

∫
dx

(
v2

2 + v4
)

=
∫

dx

⎡
⎣(

M∑
i=1

εip
i

)2

+
1

3

(
M∑
i=1

εi(p
i)3

)⎤
⎦ .
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A bi-Hamiltonian structure is defined as (in the case of dKP)

⎡
⎢⎢⎢⎣

p1

p2

...

pM

⎤
⎥⎥⎥⎦

y

= −1

2
J1

⎡
⎢⎢⎢⎢⎢⎣

δH3
δp1

δH3
δp2

...
δH3
δpM

⎤
⎥⎥⎥⎥⎥⎦ = J2

⎡
⎢⎢⎢⎢⎢⎣

δH
δp1

δH
δp2

...
δH
δpM

⎤
⎥⎥⎥⎥⎥⎦ ,

where

J1 = −

⎡
⎢⎢⎢⎢⎣

1
ε1

0 . . . . . . 0

0 1
ε2

0 . . . 0
...

...
. . .

... 0
0 0 . . . 0 1

εM

⎤
⎥⎥⎥⎥⎦ ∂x

and J2 is also a Hamiltonian operator which is compatible with J1, i.e., J1 + cJ2 is also a
Hamiltonian one for any complex number c [8, 14, 20]. We hope to find J2 and the related
Hamiltonian H.

Furthermore, from the bi-Hamiltonian structure (24) or (26) (see below) of the waterbag
model (11), we also find the recursion operator R̂ in (25) (see below) is local. Then, according
to the bi-Hamiltonian theory [14, 22], one can construct rational symmetries using the local
recursion operator R̂(equation (25)). Hence the higher-order rational conserved densities
(quasi-rational functions) are investigated.

This paper is organized as follows. In the next section, we construct the bi-Hamiltonian
structure of the waterbag model from the Landau–Ginsburg formulation in topological
field theory. Section 3 is devoted to investigating the quasi-rational symmetries and the
corresponding conserved densities of the waterbag model. In the final section, one discusses
some problems to be investigated

2. Free energy and the bi-Hamiltonian structure

In this section, we investigate the relations between the bi-Hamiltonian structure and the free
energy of the waterbag model.

The free energy is a function F(t1, t2, . . . , tn) such that the associated functions,

cijk = ∂3F

∂t i∂tj ∂tk
,

satisfy the following conditions.

• The matrix ηij = c1ij is constant and non-degenerate. This, together with the inverse
matrix ηij , is used to raise and lower indices.

• The functions ci
jk = ηircrjk define an associative commutative algebra with a unity

element(Frobenius algebra).

Equations of associativity give a system of nonlinear PDE for F(t):

∂3F(t)

∂tα∂tβ∂tλ
ηλµ ∂3F(t)

∂tµ∂tγ ∂tσ
= ∂3F(t)

∂tα∂tγ ∂tλ
ηλµ ∂3F(t)

∂tµ∂tβ∂tσ
.

These equations constitute the Witten–Dijkgraaf–Verlinde–Verlinde (or WDVV) equations.
The geometrical setting in which to understand the free energy F(t) is the Frobenius manifold
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[8, 9]. One way to construct such manifold is derived via Landau–Ginzburg formalism as the
structure on the parameter space M of the appropriate form

λ = λ(z; t1, t2, . . . , tn).

The Frobenius structure is given by the flat metric

η(∂, ∂ ′) = −
∑

resdλ=0

{
∂(λ dz)∂ ′(λ dz)

dλ(z)

}
and the tensor

c(∂, ∂ ′, ∂ ′′) = −
∑

resdλ=0

{
∂(λ dz)∂ ′(λ dz)∂ ′′(λ dz)

dλ(z) dz

}
defines a totally symmetric (3, 0)-tensor cijk .

Geometrically, a solution of WDVV equation defines a multiplication

◦ : T M × T M −→ T M

of vector fields on the parameter space M, i.e,

∂tα ◦ ∂tβ = c
γ

αβ(t)∂tγ .

From c
γ

αβ(t), one can construct integrable hierarchies whose corresponding Hamiltonian
densities are defined recursively by the formula

∂2ψ(l)
α

∂t i∂tj
= ck

ij

∂ψ(l−1)
α

∂tk
, (14)

where l � 1, α = 1, 2, . . . , n, and ψ0
α = ηαεt

ε . The integrability conditions for this systems
are automatically satisfied when the ck

ij are defined as above.
For the waterbag model (11), we have the following

Theorem 2.1. [10]:

η

(
∂

∂pi
,

∂

∂pj

)
= ηij = −εiδi,j i, j = 1, 2, . . . M,

c

(
∂

∂pα
,

∂

∂pβ
,

∂

∂pγ

)
= cαβγ = 0, α, β, γ distinct,

c

(
∂

∂pα
,

∂

∂pα
,

∂

∂pβ

)
= cααβ = εαεα

pβ − pα
, α �= β,

c

(
∂

∂pα
,

∂

∂pα
,

∂

∂pα

)
= cααα = −εα +

∑
r �=α

εαεr

pα − pr
, α �= β.

Let us define

� =
M∑
i=1

∂

∂pi
. (15)

Then we can see that

η

(
∂

∂pi
,

∂

∂pj

)
= c

(
∂

∂pi
,

∂

∂pj
,�

)
. (16)

From the theorem, one can get the free energy associated with the waterbag model (11), noting
that pi are flat coordinates,

F(�p) = −1

6

M∑
k=1

εk(p
k)3 +

1

8

∑
i �=j

εiεj (p
i − pj )2 ln(pi − pj )2, (17)
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where �p = (p1, p2, . . . , pM) and from (16) one has

t1 =
M∑
i=1

pi.

Also, we have

cα
βγ = 0, α, β, γ distinct,

cβ
αα = εα

pα − pβ
, α �= β

cα
αβ = εβ

pα − pβ
, α �= β

cα
αα = 1 −

∑
r �=α

εr

pα − pr
.

If we define ei = ∂λ
∂pi = εi

z−pi , then it is not difficult to see that

eiej = ck
ij ek + Qij

(
dλ

dz

)
, (18)

where

Qij =
⎧⎨
⎩

− εi

z − pi
, i = j,

0, i �= j.

Hence we have the recursion relation

∂2hn

∂pi∂pj
= ∂

∂pi

∮
∞

λn−1 ∂λ

∂pj
dz = ∂

∂pi

∮
∞

λn−1 εj

z − pj
dz

= (n − 1)

∮
∞

λn−2 εi

z − pi

εj

z − pj
dz +

∮
∞

λn−1 ∂

∂pi

(
εj

z − pj

)
dz

= (n − 1)

∮
∞

λn−2
(
ck
ij ek + Qij

)dλ

dz
−

∮
∞

λn−1 ∂

∂z

(
εj

z − pj

)
dz

= ck
ij (n − 1)

∮
∞

λn−2 εk

z − pk
dz −

∮
∞

∂

∂z

(
λn−1 εj

z − pj

)
dz

= ck
ij

∂

∂pk

∮
∞

λn−1 dz

= (n − 1)ck
ij

∂hn−1

∂pk
, n � 1. (19)

Moreover, we also have(∑
i

∂pi

)
hn =

∮
∞

λn−1

(
M∑
i=1

εi

z − pi

)
dz

=
∮

∞
λn−1

(
1 − dλ

dz

)
= (n − 1)hn−1. (20)

We can express (19) as

∂hn

∂pi
= (n − 1)ηkl∂−1

x

[(
∂2F

∂pi∂pl

)
x

∂hn−1

∂pk

]
,
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where

ηkl = −

⎡
⎢⎢⎢⎢⎣

1
ε1

0 . . . . . . 0

0 1
ε2

0 . . . 0
...

...
. . .

... 0
0 0 . . . 0 1

εM

⎤
⎥⎥⎥⎥⎦ .

Therefore we obtain the recursion operator [19]

Rk
i = ηkl∂−1

x

[(
∂2F

∂pi∂pl

)
x

]
= ∂−1

x

[
ηkl

(
∂2F

∂pi∂pl

)
x

]

= ∂−1
x Wk

ix = ∂−1
x ηkl ∂3F

∂pi∂pl∂pε
pε

x, (21)

where

Wk
i = ηkl ∂2F

∂pi∂pl

=

⎡
⎢⎢⎢⎢⎢⎣

p1 − ∑
l �=1 εl ln(p1 − pl) ε2 ln(p1 − p2) . . . εM ln(p1 − pM)

ε1 ln(p2 − p1) p2 − ∑
l �=2 εl ln(p2 − pl) . . . εM ln(p2 − pM)

...
...

...
...

ε1 ln(pM − p1) ε2 ln(pM − p2) . . . pM − ∑
l �=M εl ln(pM − pl)

⎤
⎥⎥⎥⎥⎥⎦.

(22)

Then ⎡
⎢⎢⎢⎢⎢⎣

∂hn

∂p1

∂hn

∂p2

...
∂hn

∂pM

⎤
⎥⎥⎥⎥⎥⎦ = (n − 1)(n − 2)R2

⎡
⎢⎢⎢⎢⎢⎣

∂hn−2

∂p1

∂hn−2

∂p2

...
∂hn−2

∂pM

⎤
⎥⎥⎥⎥⎥⎦ . (23)

Also, it is known that the Hamiltonian operators [16, 17] (see also [19])

J1 = ηij ∂x

J2 =
M∑

m=1

M∑
α=1

ηmαηiεηjr ∂3F

∂pε∂pm∂pk
pk

x∂
−1
x

∂3F

∂pα∂pr∂ps
ps

x

=
M∑

m=1

M∑
α=1

(
Wi

m

)
x
∂−1
x

(
Wj

α

)
x

are compatible. Consequently, using (23) or R2 = J−1
1 J2 , we obtain the bi-Hamiltonian

structure for the waterbag model (11), n � 2,

∂tnp
l = −1

n
ηli∂x

∂hn+1

∂pi

= −(n − 1)ηmα
(
Wl

m

)
x
∂−1
x

(
Wi

α

)
x

∂hn−1

∂pi
, (24)

where W is defined by (22).
For n = 2, i.e.(13), one can directly verify the bi-Hamiltonian structure (24).
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Remark. Using the Legendre-type transformation for WDVV equation in [8], we can
introduce new flat coordinates from the first row vector of (22):

a1 = 1

ε1

⎡
⎣p1 −

∑
l �=1

εl ln(p1 − pl)

⎤
⎦

ak = ln(p1 − pk), k = 2, 3, 4, . . . ,M.

The inverse transformation of the above equation is

p1 =
M∑
i=1

εiai

pk =
M∑
i=1

εiai − eak , k = 2, 3, 4, . . . ,M.

Then the new free energy satisfying the WDVV equation is [18]

F = ε2
1(a1)

3

6
+

ε1a1

2

∑
m�=1

εm(am)2 + P3(�a) −
∑
m�=1

εm eam

+
1

2

∑
1<m<k

εmεk[Li3(e
ak−am) + Li3(e

am−ak )],

where

P3(�a) =
∑
m�=1

εm(εm − ε1)
(
a3

m

)
6

+
∑

1<m<k

εmεk

12

[
(ak + am)3 − 2

(
a3

k + a3
m

)]
and Li3(ex) is defined by

Li3(e
x) =

∞∑
k=1

ekx

k3
,

which has the properties

Li ′′3 (ex) = − ln(1 − ex), Li ′′′3 (ex) = coth x = ex + e−x

ex − e−x
.

Using the different row vectors of (22), we can obtain different flat coordinate systems and
then get different free energies using the Legendre transformation.

3. Higher-order symmetries and conservational laws

In this section, we investigate the symmetries and the conserved densities of the waterbag
model involving the quasi-rational function. Quasi-rational means rational with respect to
higher derivatives . This will generalize the results in [23].

We start with the recursion operator (21). It can be seen that

R̂ = J1R
−1J−1

1 = ∂x(Wx)
−1 (25)

is the Sheftel–Teshkov recursion operator [19]. The bi-Hamiltonian structure (24) can also be
written as (n � 2)⎡

⎢⎢⎢⎣
p1

p2

...

pM

⎤
⎥⎥⎥⎦

tn

= (−1)

n
J1

⎡
⎢⎢⎢⎢⎢⎣

∂hn+1
∂p1

∂hn+1
∂p2

...
∂hn+1
∂pM

⎤
⎥⎥⎥⎥⎥⎦ = (−1)

n(n + 1)(n + 2)
Ĵ2

⎡
⎢⎢⎢⎢⎢⎣

∂hn+3
∂p1

∂hn+3
∂p2

...
∂hn+3
∂pM

⎤
⎥⎥⎥⎥⎥⎦ , (26)
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the Hamiltonian operator Ĵ2 = R̂2J1 being third order. Also,

R̂

⎡
⎢⎢⎢⎢⎢⎣

∂hn

∂p1

∂hn

∂p2

...
∂hn

∂pM

⎤
⎥⎥⎥⎥⎥⎦ = (n − 1)

⎡
⎢⎢⎢⎢⎢⎣

∂hn−1

∂p1

∂hn−1

∂p2

...
∂hn−1

∂pM

⎤
⎥⎥⎥⎥⎥⎦ . (27)

Next, we can express (13) as⎡
⎢⎢⎢⎣

p1

p2

...

pM

⎤
⎥⎥⎥⎦

y

= H

⎡
⎢⎢⎢⎣

p1

p2

...

pM

⎤
⎥⎥⎥⎦

x

, (28)

where

H =

⎡
⎢⎢⎢⎢⎢⎣

p1 + ε1 ε2 ε3 . . . εM

ε1 p2 + ε2 ε3 . . . εM

ε1 ε2 p3 + ε3 . . . εM

...
...

...
... εM

ε1 ε2 ε3 . . . pM + εM

⎤
⎥⎥⎥⎥⎥⎦ .

We notice that (∂y −∂xH) is Frechet’s derivative operator for the system (28). It is not difficult
to see that if

∂τ �p = �Q(�p, �px, �pxx, . . .)

is commuting flow with (28), then we have

∂y
�Q = ∂x(H �Q). (29)

Lemma 3.1. Let W be defined in (22). Then

(1) ∂yW = H∂xW ;
(2) H∂xW = (∂xW)H.

Proof. Direct computations. �

Theorem 3.2. The recursion operator R̂ satisfies the Lax representation

∂R̂

∂y
= [∂xH, R̂]. (30)

Proof. Using the lemma, we get

∂R̂

∂y
= ∂x

∂(Wx)
−1

∂y
= −∂x[(Wx)

−1Wxy(Wx)
−1]

= −∂x(Wx)
−1[HxWx + HWxx](Wx)

−1

= −∂x(Wx)
−1Hx − ∂x(Wx)

−1HWxx(Wx)
−1

= −∂x(Wx)
−1Hx − ∂xH(Wx)

−1Wxx(Wx)
−1

= −∂x(Wx)
−1Hx − ∂xH[−∂x(Wx)

−1 + (Wx)
−1∂x]

= −∂x(Wx)
−1Hx + ∂xH∂x(Wx)

−1 − ∂xH(Wx)
−1∂x

= −∂x(Wx)
−1Hx + ∂xH∂x(Wx)

−1 − ∂x(Wx)
−1H∂x

= ∂xH∂x(Wx)
−1 − ∂x(Wx)

−1∂xH

= [∂xH, ∂x(Wx)
−1] = [∂xH, R̂].

�
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Hence from the theorem one knows that Frechet’s derivative operator and the recursion operator
commute, i.e.,

(∂y − ∂xH)R̂ = R̂(∂y − ∂xH).

Moreover, if we let (H2 = H)⎡
⎢⎢⎢⎣

p1

p2

...

pM

⎤
⎥⎥⎥⎦

tn

= (−1)

n
J1

⎡
⎢⎢⎢⎢⎢⎣

∂hn+1
∂p1

∂hn+1
∂p2

...
∂hn+1
∂pM

⎤
⎥⎥⎥⎥⎥⎦ = Hn

⎡
⎢⎢⎢⎣

p1

p2

...

pM

⎤
⎥⎥⎥⎦

x

,

where

Hn = 1

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ε1

∂2hn+1
∂p1∂p1

1
ε1

∂2hn+1
∂p1∂p2

1
ε1

∂2hn+1
∂p1∂p3 . . . 1

ε1

∂2hn+1
∂p1∂pM

1
ε2

∂2hn+1
∂p2∂p1

1
ε2

∂2hn+1
∂p2∂p2

1
ε2

∂2hn+1
∂p2∂p3 . . . 1

ε2

∂2hn+1
∂p2∂pM

1
ε3

∂2hn+1
∂p3∂p1

1
ε3

∂2hn+1
∂p3∂p2

1
ε3

∂2hn+1
∂p3∂p3 . . . 1

ε3

∂2hn+1
∂p3∂pM

...
...

...
...

...
1

εM

∂2hn+1
∂pM∂p1

1
εM

∂2hn+1
∂pM∂p2

1
εM

∂2hn+1
∂pM∂p3 . . . 1

εM

∂2hn+1
∂pM∂pM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

then from (27) we also obtain(
∂tn − ∂xHn

)
R̂ = R̂

(
∂tn − ∂xHn

)
. (31)

Therefore we obtain the following

Theorem 3.3. Let hn+1 be defined by (8) and Qm be the flows defined by

�pτm
=

⎡
⎢⎢⎢⎣

p1

p2

...

pM

⎤
⎥⎥⎥⎦

τm

= Qm = R̂m

⎡
⎢⎢⎢⎢⎣

xp1
x

xp2
x

...

xpM
x

⎤
⎥⎥⎥⎥⎦ = R̂m−1

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦ .

Then Qm is a commuting flow with �ptn , i.e., �ptntτm
= �ptτm tn provided m � n.

Proof. Let us denote

x �px =

⎡
⎢⎢⎢⎢⎣

xp1
x

xp2
x

...

xpM
x

⎤
⎥⎥⎥⎥⎦ .

(I) Firstly, one proves

R̂(x �px) =

⎡
⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎦

or

x �px = R̂−1

⎡
⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎦ = Wx

⎡
⎢⎢⎣

x
x
...

x

⎤
⎥⎥⎦ ,

where W is defined by (22). A direct computation can obtain this.
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(II) Secondly, using (29) and (31), we have(
∂tn − ∂xHn

)
Qm = (

∂tn − ∂xHn

)
R̂m(x �px)

= R̂m
(
∂tn − ∂xHn

)
(x �px)

= R̂m
[
x∂x

(�ptn − Hn �px

) − Hn �px

]
= −R̂m

(�ptn

) = −n(n − 1)(n − 2) · · · (n − m + 1)�pn−m,

which vanishes if m � n by (27). �

According to the bi-Hamiltonian theory [14, 22], we can also express �pτ2m+1 as⎡
⎢⎢⎢⎣

p1

p2

...

pM

⎤
⎥⎥⎥⎦

τ2m+1

= R̂2m+1

⎡
⎢⎢⎢⎢⎣

xp1
x

xp2
x

...

xpM
x

⎤
⎥⎥⎥⎥⎦

= (R̂)2kJ1

⎡
⎢⎢⎢⎢⎢⎢⎣

∂ĥm−k

∂p1

∂ĥm−k

∂p2

...
∂ĥm−k

∂pM

⎤
⎥⎥⎥⎥⎥⎥⎦

, −∞ < k � m, (32)

where ĥ′
ms are Hamiltonian densities, m = 1, 2 . . . , with m indicating the order of derivatives

on which they depend, and

ĥ0 = −x

(
M∑
i=1

εip
i

)
= −xh1.

We notice that the Hamiltonian densities ĥm for m � 1 are rational functions in derivatives
and can be obtained using the method described in [6, p 69]. But the computation is involved
and we do not go further here. One also remarks that ĥ0 is not the conserved density of (13).

From the theorem, one knows that �pτ2m+1 commutes with �ptn provided 2m+1 � n. Inspired
by [23] (see also [24, 25]), we have the following

Conjecture. ĥm are conserved densities of �ptn provided 2m + 1 � n.

In particular, when n = 2, we get that for all ĥm,m = 1, 2, . . . , they are conserved densities
of (13).

Remark. The Riemann invariants of (13) are

λi = λ(ui),

where

dλ

dz

∣∣∣∣
z=ui

= 0,

and the associated Lame coefficients �i are defined by

�2
i (

�λ) = Resui

(dz)2

dλ
,
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where �λ = (λ1, λ2, . . . , λM). Then it is shown that (13) has the conserved density [25]

h(�λ, �λx) =
M∑

k=1

�2
i

λi,x

.

One can believe the following identity

ĥ1 = h(�λ, �λx),

(up to some scaling) but a proof is still unknown.

4. Concluding remarks

We establish the bi-Hamiltonian structure (26) (or (24)) of the waterbag model (11) using the
free energy (17) (or theorem 2.1) of topological field theory associated with it. It turns out that
the bi-Hamiltonian structures consist of first-order and third-order Hamiltonian operators when
compared with the compatible Dubrovon–Novikov Hamiltonian operators [7, 8]. The reason
is that the waterbag model (11) has no Euler vector field or the free energy (17) has no quasi-
homogeneous property. In this situation, it is shown that there are compatible Hamiltonian
operators of first order and third order using such free energy [16, 17, 19]. On the other hand,
since the recursion operator (25) is local, it is natural to think about the rational symmetries of
waterbag, which tries to generalize the results in [23] to the n-component case. We conjecture
that ĥm (m � 1) is a conserved density of the quasi-rational function for the hierarchy under
the constraint 2m + 1 � n. These conserved densities are related to the degenerate Lagrangian
representations in flat coordinates for the hierarchy of the waterbag model (see [15, 21]). In
Riemann’s invariants, these Lagrangian representations are investigated in [19].

One believes that these results can be generalized to the waterbag model of dToda [2].
But the computation is more involved and should be addressed elsewhere.
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